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Abstract

We present a new type of algorithm: the coupled pressure and temperature correction algorithm. It is situated in

between the fully coupled and the fully segregated approach, and is constructed such that Mach-uniform accuracy

and efficiency are obtained. The essential idea is the separation of the convective and the acoustic/thermodynamic phe-

nomena: a convective predictor is followed by an acoustic/thermodynamic corrector. For a general case, the corrector

consists of a coupled solution of the energy and the continuity equations for both pressure and temperature corrections.

For the special case of an adiabatic perfect gas flow, the algorithm reduces to a fully segregated method, with a pres-

sure-correction equation based on the energy equation. Various test cases are considered, which confirm that Mach-uni-

formity is obtained.
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1. Introduction

Mach-uniform algorithms are an indispensable tool in numerous flow situations [1]. For years, the CFD-
world has been searching for the ideal algorithm that can handle any level of the Mach number. With
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preconditioning, the originally high speed density-based algorithms were extended toward the low Mach

number regime [2,3]. The solution technique is then coupled and time accuracy can only be recovered

through an expensive dual time stepping. As a segregated algorithm, the pressure-correction method is a

well-established technique for incompressible flow [4]. Several attempts have been made to develop com-

pressible pressure-correction methods [5–14]. Often, these algorithms are either not Mach-uniform or
not applicable in general flow situations (for example, flows with heat transfer, a general fluid, etc.). In this

paper, we aim to construct a collocated pressure-correction method that does have these features. A prop-

agation analysis of the Euler and Navier–Stokes equations, valid for a general fluid, reveals how to reach

Mach-uniformity. For a general flow, this leads to an algorithm that is situated in between the fully coupled

and the fully segregated approach: the coupled pressure and temperature correction algorithm. When special

cases are considered, like a constant density flow or the adiabatic flow of a perfect gas, the algorithm

reduces to some well-known methods available in the literature.
2. Governing equations

For the sake of simplicity, we consider a one-dimensional non-viscous flow in a tube with a variable sec-

tion ŜðxÞ. The extension to two-dimensional viscous flow is straightforward. The governing Navier–Stokes

equations are
oðq̂ŜÞ
ôt

þ oðq̂ûŜÞ
ox̂

¼ 0; ð1Þ

oðq̂ûŜÞ
ôt

þ oðq̂ûûŜÞ
ox̂

¼ �Ŝ
op̂
ox̂

; ð2Þ

oðq̂ÊŜÞ
ôt

þ oðq̂Ĥ ûŜÞ
ox̂

¼ � oðq̂ŜÞ
ox̂

; ð3Þ
All dimensional quantities are denoted by a hat ( ˆ), e.g., t̂; q̂; p̂; û; Ĥ ; Ê and x̂ denote, respectively, the

time, density, pressure, velocity, total enthalpy, total energy and the spatial coordinate. Friction and exter-

nal heat sources are neglected, but internal heat transfer due to conduction is taken into account. The heat

flux q̂ (W/m2) is expressed by Fourier�s law, q̂ ¼ �ĵðoT̂=ox̂Þ, with ĵ the heat conduction coefficient. The
fluid is characterized by the equations of state,
q̂ ¼ q̂ðp̂; T̂ Þ; ð4Þ

q̂ê ¼ q̂êðp̂; T̂ Þ; ð5Þ

with e the specific internal energy.

The equations are non-dimensionalized by choosing three reference quantities, p̂r; T̂ r and L̂r. Other ref-

erence quantities are calculated as
q̂r ¼ q̂ðp̂r; T̂ rÞ; ð6Þ

ûr ¼
ffiffiffiffiffi
p̂r
q̂r

s
; ð7Þ

t̂r ¼ L̂r=ûr; ð8Þ
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êr ¼ Êr ¼ Ĥ r ¼ p̂r=q̂r: ð9Þ

The non-dimensional variables are defined as
p ¼ p̂=p̂r; T ¼ T̂=T̂ r; . . . ð10Þ

The non-dimensional Navier–Stokes equations have the same structure as Eqs. (1)–(3), thus the latter are

equally well valid for the non-dimensional variables. The RHS of the energy equation reads
o

ox
j
oT
ox

S
� �

; ð11Þ
with
j ¼ ĵ
T̂ r

L̂rûrp̂r
; ð12Þ
the non-dimensional conduction coefficient. For a perfect gas, the non-dimensional equations of state read
q ¼ p=T ; ð13Þ

qe ¼ 1

c� 1
p; ð14Þ
with c the ratio of the specific heats.
3. Finite volume discretization

To discretize the equations, the flow domain is subdivided into a finite number of control volumes of

length Dx. The variables are stored in the control volume center (collocated arrangement). The first node

(i = 1) and the last node (i = N) coincide with the boundaries of the flow domain. A finite volume method is

applied to discretize Eqs. (1)–(3). The time discretization is first order. The discretized version of the
Navier–Stokes equations (1)–(3) reads
qnþ1
i � qn

i þ
s
Si

ðquSÞnþ1

iþ1
2
� ðquSÞnþ1

i�1
2

h i
¼ 0; ð15Þ

ðquÞnþ1

i � ðquÞni þ
s
Si

ðquuSÞnþ1

iþ1
2
� ðquuSÞnþ1

i�1
2

h i
¼ �sðpnþ1

iþ1
2

� pnþ1

i�1
2

Þ; ð16Þ

ðqEÞnþ1

i � ðqEÞni þ
s
Si

ðqHuSÞnþ1

iþ1
2
� ðqHuSÞnþ1

i�1
2

h i
¼ � s

Si
ðqSÞnþ1

iþ1
2
� ðqSÞnþ1

i�1
2

h i
; ð17Þ
where n and n + 1 indicate the old and the new time level, respectively, s = Dt/Dx, and Dt is the time step.
4. Mach-uniform accuracy

In a collocated arrangement, the problem of low Mach pressure–velocity decoupling is classically rem-

edied by a Rhie–Chow interpolation for the cell face velocities [15].
However, in [16] we show that this causes the smearing of shocks in highly compressible flow. Therefore,

it prevents reaching Mach-uniform accuracy. Thus, we will not use it in our algorithm. Instead, we work

with the advection upwind splitting method (AUSM+) for the spatial discretization [17,18]. Though orig-

inally developed for density-based methods, the AUSM-flux fits perfectly in the context of pressure-based
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methods because of the splitting into a convective and a pressure flux part. We apply a first-order upwind

scheme for the transported quantities. The transporting velocity and the pressure at the cell faces are de-

fined by Mach-dependent interpolations. At high Mach numbers, the AUSM-flux performs very well. At

low Mach numbers special measures have to be taken with respect to the scaling and decoupling problem

[19]. The bad scaling at low Mach numbers is remedied by introducing a preconditioned speed of sound and
preconditioned Mach numbers. The low Mach pressure–velocity coupling is realized through the addition

of a pressure-diffusion term to the cell face velocity. Under a compact notation, it reads
uiþ1
2
¼ ~uiþ1

2
� Diþ1

2
ðpiþ1 � piÞ; ð18Þ
with ~u the cell face velocity defined by the AUSM+ interpolation. The expression for the coefficient D can

be found in [19]. However, we remark that it is not essential to follow this exact definition. A simplification

is possible, as was done in [20].

We conclude that the AUSM+ flux realizes good accuracy, both in the low and high Mach number re-

gime. Therefore, it allows us to reach Mach-uniform accuracy.
5. Mach-uniform efficiency

Mach-uniform efficiency implies a good convergence rate, whatever the Mach number is. Especially the

low speed limit is critical, due to severe time step restrictions imposed by the stability of the scheme. These

limits can be of an acoustic as well as of a diffusive nature.

The acoustic time step limit is expressed by the acoustic CFL-number,
CFLuþc ¼
ðuþ cÞDt

Dx
6 CFLmax

uþc ; ð19Þ
where CFLmax
uþc is of the order unity. The highest allowable time step therefore is
Dtmax

Dx
¼ CFLmax

uþc

uþ c
: ð20Þ
The convective CFL-number is
CFLu ¼
uDtmax

Dx
¼ u

uþ c
CFLmax

uþc ¼
1

1þ 1
M

CFLmax
uþc ; ð21Þ
which can be many orders lower than unity if the Mach number M becomes small. Thus, a convective wave

will need many time steps Dt to travel one cell size Dx. This well-known stiffness problem destroys the con-

vergence rate at low Mach numbers [21]. It therefore needs to be remedied in order to reach Mach-uniform

efficiency.

Also a diffusive time step limit can have a devastating effect on the efficiency of the algorithm. This limit

is expressed by the Von Neumann number,
Ne ¼ aDt
Dx2

6
1

2
; ð22Þ
with a = j/qcp the thermal diffusivity. We get
Dtmax

Dx
¼

1
2
Dx
a

ð23Þ
and
CFLu ¼
1

2

uDx
a

: ð24Þ



K. Nerinckx et al. / Journal of Computational Physics 206 (2005) 597–623 601
If the diffusive phenomenon (conduction) dominates the convection, a low CFLu-number will destroy the

convergence rate once again. The same holds for the diffusive time step limit due to the viscous terms.

5.1. Removal of the acoustic time step limit

To remedy the stiffness problem, the acoustic CFL-limit has to be removed. 2 This can be obtained by

treating implicitly the terms that carry acoustic information. In the following system of conservative Euler

equations, we underlined those acoustic terms,
2 A

order.
oq
ot

þ oqu
ox

¼ 0; ð25Þ

oqu
ot

þ oquu
ox

¼ �op
ox
; ð26Þ

oqE
ot

þ oqHu
ox

¼ 0; ð27Þ
with
qE ¼ qeþ 1
2
qu2; ð28Þ

qHu ¼ ðqeþ pÞuþ 1
2
qu2u: ð29Þ
We now explain how they were identified.

For this purpose, the Euler equations are transformed into a quasi-linear form. We expand the deriva-

tives as
oq
ot

þ u
oq
ox

þ q
ou
ox

¼ 0; ð30Þ

q
ou
ot

þ u
oq
ot

þ qu
ou
ox

þ u
oqu
ox

þ op
ox

¼ 0; ð31Þ

oqe
ot

þ o

ot
1

2
qu2

� �
þ ðqeþ pÞ ou

ox
þ u

oqe
ox

þ u
op
ox

þ o

ox
1

2
qu2u

� �
¼ 0: ð32Þ
We replace Eq. (31) by (31) � u * (25),
q
ou
ot

þ qu
ou
ox

þ op
ox

¼ 0 ð33Þ
and Eq. (32) by (32) � u * (33) � (1/2)u2 * (30),
oqe
ot

þ ðqeþ pÞ ou
ox

þ u
oqe
ox

¼ 0: ð34Þ
Next, the system of equations (30), (33) and (34), is written in the primitive variables p, u, T,
nother approach is to accept the limit, but to adapt the system such that the eigenvalues u, u ± c always remain of the same

This is the philosophy of a time derivative preconditioning technique [2,3].
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qp
op
ot

þ u
op
ox

� �
þ qT

oT
ot

þ u
oT
ox

� �
þ q

ou
ox

¼ 0; ð35Þ

q
ou
ot

þ qu
ou
ox

þ op
ox

¼ 0; ð36Þ

ðqeÞp
op
ot

þ u
op
ox

� �
þ ðqeÞT

oT
ot

þ u
oT
ox

� �
þ ðqeþ pÞ ou

ox
¼ 0: ð37Þ
Fluid properties were introduced, using the equations of state,
q ¼ qðp; T Þ ð38Þ

qe ¼ qeðp; T Þ; ð39Þ

and
qp ¼
oq
op

����
T¼cst

; qT ¼ oq
oT

����
p¼cst

; ð40Þ

ðqeÞp ¼
oðqeÞ
op

����
T¼cst

; ðqeÞT ¼ oðqeÞ
oT

����
p¼cst

: ð41Þ
We now transform the system (35)–(37) into a quasi-linear system in p, u, s (s the entropy), from which the

identification of acoustic terms will become clear. First, Eqs. (35) and (37) are combined to obtain an equa-
tion for pressure,
qpðqeÞT � ðqeÞpqT

h i op
ot

þ u
op
ox

� �
þ qðqeÞT � ðqeþ pÞqT

� � ou
ox

¼ 0: ð42Þ
It can be written as
op
ot

þ u
op
ox

þ qc2
ou
ox

¼ 0; ð43Þ
with
c2 ¼ dp
dq

����
s¼cst

ð44Þ
the speed of sound. In Appendix A, we show that a general definition for the speed of sound is indeed given

by
c2 ¼ 1

q
ðqeþ pÞqT � qðqeÞT
ðqeÞpqT � qpðqeÞT

: ð45Þ
Next, Eqs. (35) and (37) are combined into an equation for the entropy s. With
T ds ¼ dh� 1

q
dp ¼ de� p

q2
dq ¼ d

qe
q

� �
� p
q2

dq; ð46Þ
we have,
q2T ds ¼ q dðqeÞ � ðqeþ pÞ dq: ð47Þ

Thus, Eq. (37) * q � Eq. (35) * (qe + p) results in
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Ds
Dt

¼ 0; ð48Þ
which represents the convective transport of the entropy.
Eqs. (43), (36) and (48) form a quasi-linear system in p, u, s,
Dp
Dt

þ qc2
ou
ox

¼ 0; ð49Þ

Du
Dt

þ 1

q
op
ox

¼ 0; ð50Þ

Ds
Dt

¼ 0: ð51Þ
In system form it reads,
DQ
Dt

þ A
oQ
ox

¼ 0; ð52Þ
with Q = [p, u, s]T, and
A ¼
0 qc2 0

1=q 0 0

0 0 0

2
64

3
75: ð53Þ
Written in this form, the system matrix A has eigenvalues ±c, therefore representing the acoustic part of the

system. It is the term qc2(ou/ox) from the pressure equation (49) and the term (1/q)(op/ox) from the velocity

equation (50) which contribute to the acoustic part. This becomes even more clear when these two equa-
tions are combined to obtain an acoustic wave equation. Indeed, considering a pressure perturbation p 0

above the convective flow and taking the time derivative of (49) yields
D2p0

Dt2
þ qc2

o

ox
Du0

Dt

� �
¼ 0: ð54Þ
Combination with (50) results in the following acoustic wave equation:
D2p0

Dt2
� c2

o
2p0

ox2
¼ 0; ð55Þ
for a pressure perturbation p 0 at speed c.

In the system (49)–(51), the acoustic terms are underlined. To remove the acoustic CFL-limit, the deriv-

atives in these terms will have to be treated implicitly. In the quasi-linear form of the equations, this is triv-

ial. However, since we aim at an algorithm for all Mach numbers, including the transonic regime, the

discretization has to be done in fully conservative form. Therefore, we return to the conservative set

(25)–(27), and we identify where the acoustic terms appear in the latter equations. This is made clear by

underlining the concerning terms in each step of the analysis performed. Remark that the underlined
o/ot-terms in fact contribute to the acoustic as well as to the convective system. From the set (25)–(27),

it is clear that the acoustic information is found in the mass flux of the continuity equation, the pressure

gradient of the momentum equation, and the static enthalpy flux of the energy equation. These terms have

to be treated implicitly in order to remove the acoustic CFL-limit. In the static enthalpy flux, only the veloc-

ity u has to be treated implicitly, since only this variable appears under a derivative in the acoustic term. For

the same reason, in the mass flux, only the velocity has to be treated implicitly.



604 K. Nerinckx et al. / Journal of Computational Physics 206 (2005) 597–623
5.2. Removal of the diffusive time step limit

When the Navier–Stokes equations are considered, viscous terms occur in the momentum and the energy

equation, and conductive terms occur in the energy equation. To avoid diffusive time step limits, also these

terms have to be treated implicitly.
6. Special cases

The analysis in the previous paragraph is valid for a general fluid. At this point, however, it is very

instructive to consider some special cases.

6.1. Special case 1: constant density

If the density q is considered as constant, the continuity equation (35) reduces to the kinematic con-

straint (ou/ox) = 0, and the energy equation (37) becomes a transport equation for the temperature. There-

fore, the pressure and the velocity are determined by the continuity and momentum equation, while the

temperature follows from the energy equation. This is the philosophy of a classical incompressible pres-

sure-correction method, where the Poisson equation for the pressure corrections is derived from the conti-

nuity equation.

6.2. Special case 2: barotropic flow

In a barotropic flow, the density only depends on the pressure, q = q(p). Since then qT = 0, the temper-

ature dependence disappears from the continuity equation (37). Like for the constant density flow, the pres-

sure and the velocity are determined by the continuity and the momentum equation.

6.3. Special case 3: perfect gas

For a perfect gas, the equation of state (14) reads
qe ¼ p
c� 1

; ð56Þ
so that qe depends only on the pressure. Therefore, the temperature dependence now disappears from the

energy equation (37). Thus, the most straightforward procedure is to determine the pressure and the veloc-

ity from the energy and momentum equation, and to use the continuity equation afterward to determine the

temperature.
However, when heat conduction is present, conductive temperature terms appear in the energy equation,

so that it is no longer an equation for pressure alone. Eqs. (35) (continuity) and (37) (energy minus kinetic

energy) become for this case
qp
op
ot

þ u
op
ox

� �
þ qT

oT
ot

þ u
oT
ox

� �
þ q

ou
ox

¼ 0; ð57Þ

ðqeÞp
op
ot

þ u
op
ox

� �
þ ðqeþ pÞ ou

ox
¼ � oqðT Þ

ox
; ð58Þ
showing that the continuity and energy equation together determine both pressure and temperature.
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7. Implementation: the coupled pressure and temperature correction algorithm

7.1. Convective step: predictor

The first step in the algorithm is a predictor step for density and momentum. In the discretized continuity
and momentum equation, (15) and (16), the transport velocity and the pressure are put at a known iteration

level k. We leave the possibility open to perform more than one iteration per time level, but in practice only

one iteration step per time step was taken, so that k ” n. The values for density and momentum computed in

that way are indicated with a superscript *, i.e.
q�
i � qn

i þ
s
Si

q�
i u

k
iþ1

2
Siþ1

2
� q�

i�1u
k
i�1

2
Si�1

2

h i
¼ 0; ð59Þ

ðquÞ�i � ðquÞni þ
s
Si

ðquÞ�i ukiþ1
2
Siþ1

2
� ðquÞ�i�1u

k
i�1

2
Si�1

2

h i
¼ �sðpkiþ1

2
� pki�1

2
Þ: ð60Þ
From q*, (qu)* and pk, an intermediate state * is determined. The predictor step takes place under a frozen

pressure. It therefore can be considered as a convective step. In the predictor equations above, the trans-
ported quantities q* and (qu)* are treated in an implicit way. The predictor could be made fully explicit

by writing the convective terms at the old time level n, but a convective CFL limit then has to be respected.

The reason why we do not determine u* directly from (60) using old values qk, is the good representation

of a contact discontinuity. Since then the pressure and the velocity have to remain constant at every

moment, no pressure and velocity corrections may be generated. Consequently, the predictor should not

disturb the velocity values u, as they cannot be corrected afterwards. Therefore, correct values for q have

to be used in the momentum equation, which explains the need for a convective step from the continuity

equation.

7.2. Acoustic/thermodynamic step: corrector

Corrections with respect to the predictor values are defined,
pnþ1 ¼ pk þ p0; ð61Þ

ðquÞnþ1 ¼ ðquÞ� þ ðquÞ0; ð62Þ

T nþ1 ¼ T � þ T 0: ð63Þ

They are introduced into the discretized equations, namely in the terms at the new time level. Amongst

them are the implicit diffusive and acoustic terms identified in Section 5.

7.2.1. Momentum equation

We write the momentum predictor equation (60) as
ðquÞ�i � ðquÞni þ
s
Si

ðquÞ�i ~ukiþ1
2
� Diþ1

2
ðpkiþ1 � pki Þ

h i
Siþ1

2
� ðquÞ�i�1 ~uki�1

2
� Di�1

2
ðpki � pki�1Þ

h i
Si�1

2

n o
¼ �s pkiþ1

2
� pki�1

2

n o
; ð64Þ
where the pressure diffusion term from (18) was written down.

In the final momentum equation, the pressure gradient is written at the new time level n + 1, as it was

identified as an acoustic term. Also the pressure terms coming from the pressure stabilization are treated

implicitly,



606 K. Nerinckx et al. / Journal of Computational Physics 206 (2005) 597–623
ðquÞnþ1

i � ðquÞni þ
s
Si

ðquÞnþ1

i ~ukiþ1
2
� Diþ1

2
ðpnþ1

iþ1 � pnþ1
i Þ

h i
Siþ1

2
� ðquÞnþ1

i�1 ~uki�1
2
� Di�1

2
ðpnþ1

i � pnþ1
i�1 Þ

h i
Si�1

2

n o
¼ �s pnþ1

iþ1
2

� pnþ1

i�1
2

n o
: ð65Þ
Subtraction of (65) and (64) gives
ðquÞ0i þ
s
Si

ðquÞ0iukiþ1
2
Siþ1

2
� ðquÞ0i�1u

k
i�1

2
Si�1

2

n o
þ s
Si

�ðquÞ�i Diþ1
2
ðp0iþ1 � p0iÞSiþ1

2
þ ðquÞ�i�1Di�1

2
ðp0i � p0i�1ÞSi�1

2

n o
¼ �s p0iþ1

2
� p0i�1

2

n o
; ð66Þ
where products of corrections were neglected. To make a segregated solution procedure possible, we need

to simplify Eq. (66) into an expression which contains only the momentum correction at the node i. There-

fore, we cross out the momentum corrections coming from the convective terms. We remark that in fact

there is no strict justification why it would be allowed to do such an approximation. Consequently, due

to this segregation procedure, a certain degree of implicitness in the convective terms is lost. We get as
an expression for ðquÞ0i,
ðquÞ0i ¼
s
Si

ðquÞ�i Diþ1
2
ðp0iþ1 � p0iÞSiþ1

2
� ðquÞ�i�1Di�1

2
ðp0i � p0i�1ÞSi�1

2

n o
� s p0iþ1

2
� p0i�1

2

n o
: ð67Þ
The pressure corrections at the faces are expressed by means of the AUSM interpolation formula [17],
p0iþ1
2
¼ Pþ

5 ðMiÞp0i þ P�
5 ðMiþ1Þp0iþ1: ð68Þ
From (67) the momentum corrections at the nodes can be calculated once the pressure corrections are

known.

The momentum corrections at the faces are written as
ðquÞ0iþ1
2
¼ ðq~uÞ0iþ1

2
� q�

i Diþ1
2
ðp0iþ1 � p0iÞ: ð69Þ
The correction ðq~uÞ0iþ1
2
is expressed as an average of node values. Indeed, ignoring the pressure diffusion

terms, (67) can be written as
ðquÞ0i ¼ �sDx
op0

ox

����
i

: ð70Þ
The same holds at node i + 1. We determine ðq~uÞiþ1
2
as a contracted average,
ðq~uÞ0iþ1
2
¼ � 1

2
sDx

op0

ox

����
i

þ sDx
op0

ox

����
iþ1

� �
� �sDx

op0

ox

����
iþ1

2

� �sðp0iþ1 � p0iÞ; ð71Þ
being inspired by the expressions on a staggered grid or by the classical Rhie–Chow interpolation [22].

Thus, the relation between momentum corrections at the faces and pressure corrections is obtained from

(69) and (71),
ðquÞ0iþ1
2
¼ � sþ q�

i Diþ1
2

h i
ðp0iþ1 � p0iÞ: ð72Þ
7.2.2. Continuity equation

In the continuity equation (15), the density is expandeds
qnþ1
i ¼ q�

i þ q�
pp

0
i þ q�

T T
0
i: ð73Þ
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The mass flux, which is an acoustic term (see Eq. (25)), is corrected as
ðquÞnþ1

iþ1
2
¼ ðquÞ�iþ1

2
þ ðquÞ0iþ1

2
; ð74Þ
and the correction is expressed by (72). The continuity equation thus becomes an equation for both pressure

and temperature corrections,
Ai;i�1p0i�1 þ Ai;ip0i þ Ai;iþ1p0iþ1 þ q�
T T

0
i ¼ SCi; ð75Þ
with
Ai;i�1 ¼ �s sþ q�
i�1Di�1

2

� � Si�1
2

Si
; ð76Þ

Ai;i ¼ q�
p þ s sþ q�

i Diþ1
2

� � Siþ1
2

Si
þ s sþ q�

i�1Di�1
2

� � Si�1
2

Si
; ð77Þ

Ai;iþ1 ¼ �s sþ q�
i Diþ1

2

� � Siþ1
2

Si
; ð78Þ

SCi ¼ qn
i � q�

i �
s
Si

ðquÞ�iþ1
2
Siþ1

2
� ðquÞ�i�1

2
Si�1

2

h i
: ð79Þ
7.2.3. Energy equation

In the energy equation (17), the total energy is expanded as
ðqEÞnþ1

i ¼ ðqEÞ�i þ ðqeÞ�pp0i þ ðqeÞ�T T 0
i; ð80Þ
where only the internal energy is corrected, being the acoustic part (see Eq. (28)). The total enthalpy flux is

written as,
ðqHuÞiþ1
2
¼ ðqHÞiuiþ1

2
¼ ðqeþ pÞiuiþ1

2
þ 1

2
ðqu2Þiuiþ1

2
: ð81Þ
According to the identification of acoustic terms (see Eq. (29)), only the first velocity term is corrected,
ðqHuÞnþ1

iþ1
2
¼ ðqeþ pÞ�i

ðquÞ�iþ1
2
þ ðquÞ0iþ1

2

q�
iþ1

2

þ 1

2
qu2
	 
�

i
u�iþ1

2
¼ ðqHÞ�i u�iþ1

2
þ h�i ðquÞ

0
iþ1

2
ð82Þ
and the momentum correction is again replaced by (72). The heat flux qiþ1
2
is discretized centrally and

temperature corrections are introduced to avoid a diffusive time step limit,
qnþ1

iþ1
2

¼ j
oT
ox

� �nþ1

iþ1
2

¼ j
ðT �

iþ1 þ T 0
iþ1Þ � ðT �

i þ T 0
iÞ

Dx
: ð83Þ
Introducing these terms into (17) results in a second equation containing both pressure and temperature

corrections,
Gi;i�1p0i�1 þ Gi;ip0i þ Gi;iþ1p0iþ1 þ J i;i�1T 0
i�1 þ J i;iT 0

i þ J i;iþ1T 0
iþ1 ¼ SEi; ð84Þ
with
Gi;i�1 ¼ �s sþ q�
i�1Di�1

2

� � Si�1
2

Si
h�i�1; ð85Þ



608 K. Nerinckx et al. / Journal of Computational Physics 206 (2005) 597–623
Gi;i ¼ ðqeÞ�p þ s sþ q�
i Diþ1

2

� � Siþ1
2

Si
h�i þ s sþ q�

i�1Di�1
2

� � Si�1
2

Si
h�i�1; ð86Þ

Gi;iþ1 ¼ �s sþ q�
i Diþ1

2

� � Siþ1
2

Si
h�i ; ð87Þ

J i;i�1 ¼ �s
Si�1

2

Si

j
Dx

; ð88Þ

J i;i ¼ ðqeÞ�T þ
s
Si

j
Dx

Siþ1
2
þ Si�1

2

� �
; ð89Þ

J i;iþ1 ¼ �s
Siþ1

2

Si

j
Dx

: ð90Þ

SEi ¼ qEn
i � qE�

i �
s
Si

ðqHÞ�i u�iþ1
2
Siþ1

2
� ðqHÞ�i�1u

�
i�1

2
Si�1

2

h i
þ s
Si

j
Dx

ðT �
iþ1 � T �

i ÞSiþ1
2
� ðT �

i � T �
i�1ÞSi�1

2

h i
: ð91Þ
7.3. Procedure

The two correction equations (75) and (84) can be written in system form,
Ai;i�1 0

Gi;i�1 J i;i�1

� �
p0i�1

T 0
i�1

� �
þ

Ai;i q�
T

Gi;i J i;i

� �
p0i
T 0

i

� �
þ

Ai;iþ1 0

Gi;iþ1 J i;iþ1

� �
p0iþ1

T 0
iþ1

� �
¼

SCi

SEi

� �
; ð92Þ
which is in fact a (2N · 2N)-system when all nodes are considered. This system is solved for the pressure

and temperature corrections. Because of the coupled solution of the continuity and energy equation, we

refer to the method as coupled pressure and temperature correction algorithm.

Finally, we summarize the successive steps of the algorithm:

� Predictor step: q* is determined from the continuity equation and (qu)* from the momentum equation.

These values, together with the old pressure value pk, determine an intermediate state *;

� Corrector step: coupled solution of the corrector equations (84) and (75) for pressure and temperature
corrections. The pressure and temperature are updated;

� The density is updated through the equation of state qn + 1 = q(pn + 1,Tn + 1);

� Momentum corrections in the nodes are calculated with (67). Momentum is updated. An alternative is to

use the implicit momentum equation (65) with the updated values for the pressure;

� The velocity is calculated from the updated values for momentum and density;

� A next iteration step is taken.

7.4. Boundary conditions

For the test case of the one-dimensional nozzle flow (see Sections 9.1 and 9.2.1), the first node (i = 1) and

the last node (i = N) coincide with, respectively, the inlet and the outlet. At the inlet face we define values

for density qin and velocity uin. At the outlet face we define the pressure pout. We use the following equations

at the boundaries:
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Inlet

� Predictor: q�
1 ¼ qin; ðquÞ�1 ¼ qinuin;

� First correction equation: p01 � p02 ¼ pk2 � pk1;
� Second correction equation:

p0
1

qin
� T 0

1 ¼ 0;
� Momentum correction: ðquÞ01 ¼ 0.

Outlet

� Predictor: consider a control volume of length Dx/2 at the outlet,
continuity : q�
N � qn

N þ 2s
SN

q�
Nu

k
NSN � q�

N�1u
k
N�1

2
SN�1

2

h i
¼ 0; ð93Þ

momentum : ðquÞ�N � ðquÞnN þ 2s
SN

ðquÞ�NukNSN � ðquÞ�N�1u
k
N�1

2
SN�1

2

h i
¼ �2sðpout � pkN�1

2
Þ; ð94Þ
� First correction equation: p0N ¼ 0;

� Second correction equation: T 0
N � T 0

N�1 ¼ T �
N�1 � T �

N ;

� Momentum: ðquÞnþ1

N ¼ q�
Nu

nþ1
N�1 ¼ q�

N
ðquÞnþ1

N�1

q�
N�1

.

Remark that these very simple boundary conditions are in fact very reflective [23], and therefore can de-

stroy the convergence rate in some cases. For example, for a nozzle flow with a throat Mach number of 0.1,

length L = 100Dx and a convective CFLu of 1, an acoustic wave needs about 10 time steps to reach the

boundaries, where it is reflected. At lower Mach numbers, the acoustic wave passes the boundaries within
one time step, so that they do not get the risk to be reflected.

For the test case of the two-dimensional thermally driven cavity (see Section 9.2.2), a vertex-centered

arrangement is used. The velocity is zero at the walls. The temperature is given at the right and the left wall.

The upper and lower wall are isolated (adiabatic). The boundary conditions are used as follows:

� Predictor q*: the continuity equation for a boundary control volume is written as for internal nodes, but

without convective contribution from the node(s) at the boundary;

� Predictor (qu)*, (qv)*: ðquÞ�i ¼ 0, ðqvÞ�i ¼ 0 for boundary nodes;
� First correction equation: the continuity equation for a boundary control volume is written as for inter-

nal nodes, but without convective contribution from the node(s) at the boundary. Pressure and temper-

ature corrections are introduced as usual;

� Second correction equation: at the upper and lower wall, the energy equation is written as for internal

nodes, but without convective and conductive contributions from the node(s) at the wall. Pressure and

temperature corrections are introduced as usual. At the left and right wall, we use T 0 = 0.

7.5. The special case of a perfect gas

7.5.1. Perfect gas, no heat transfer: pressure-correction algorithm

Consider the frequent case of a perfect gas flow without heat transfer. With j and (qe)T equal to zero, all

coefficients J in (84) vanish. Consequently, all temperature corrections disappear from the energy equation,

which becomes a pure pressure-correction equation,
Gi;i�1p0i�1 þ Gi;ip0i þ Gi;iþ1p0iþ1 ¼ SEi: ð95Þ
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This corresponds with the analysis made in Section 5.1: for the special case of a perfect gas, in absence of

heat transfer, the energy equation determines the pressure. Thus, no coupled solution with the continuity

equation is needed anymore.

For this special case, the algorithm is therefore implemented as follows:

� Predictor values q�
i and ðquÞ�i are determined from (59) and (60). The predictor value q* is taken as an

update for the density, i.e. qn + 1 = q*. Together with the old pressure values pk, an intermediate state * is

determined;

� The system of pressure-correction equations (95) is solved. The pressure is updated;

� Momentum is updated from (67);

� The velocity is calculated from the updated values for momentum and density;

� The equation of state is used to update the temperature, Tn + 1 = pn + 1/qn + 1;

� A next iteration step is taken.

In fact, the first correction equation of (92) is not used in this algorithm, and the continuity equation is

only used in the predictor step. Indeed, for this special case, the energy equation is purely pressure-deter-

mining (see Eq. (37)). The continuity equation also contains acoustic information (see Eq. (35)), but can be

considered as passive. For this special case, the obtained method is essentially the same as the one presented

in [11] and [12].

Thus, the most straightforward way is to determine the pressure corrections from the energy-based

correction equation. However, this does not mean that other ways are forbidden. Indeed, one could decide
to determine the pressure corrections from the continuity-based correction equation under a frozen

temperature,
Ai;i�1p0i�1 þ Ai;ip0i þ Ai;iþ1p0iþ1 ¼ 0þ SCi ðT 0
i ¼ 0Þ: ð96Þ
The energy equation is then used as an equation for the temperature. This is only possible if an old density

value is used in the energy equation. For a detailed description of the latter implementation, we refer to

Appendix B.

Though possible, it is clear that this second solution procedure is not the most efficient: the �passive�
equation (96) is used to determine the pressure. Due to the approximation T 0 = 0 in (96), several iterations

would be needed to solve the system (92). If only one iteration is done, an underrelaxation of the pressure

and the temperature is needed to keep the computation stable, leading to a slowdown of the convergence

rate. This is illustrated in Section 9.1.

7.5.2. Perfect gas, with heat transfer: coupled pressure and temperature correction algorithm

When heat conduction is present, one could calculate the conductive flux from temperature values T*

available from the predictor step. The fluid still being a perfect gas, the same procedure as above (adiabatic
perfect gas) could be adopted, with some extra (known) temperature terms added in the RHS of the pres-

sure-correction equation. In this method, an acoustic CFL-limit is still avoided. However, due to the expli-

cit treatment of the conductive terms, a diffusive Neumann-limit will occur. This is confirmed by the tests

performed in Section 9.2.

On the other hand, the coupled pressure and temperature correction method of Section 7.3 avoids the

diffusive limit. This corresponds with the analysis of Section 5.2: in presence of heat transfer, the energy

and continuity equation determine together both pressure and temperature, even if a perfect gas is

considered.
Finally this remark. One could also think of replacing the temperature in the heat flux by the perfect gas

law, as
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qðT Þnþ1 ¼ �j
oT
ox

� �nþ1

¼ �j
o

ox
pk þ p0

q�

� �
: ð97Þ
Thus, some extra terms are added in the LHS of the pressure-correction equation, but no coupled solution
with the continuity equation is needed. However, tests showed that this procedure cannot remove the dif-

fusive limit. This can be explained in the following way. In (97), it may seem that the temperature is treated

implicitly, because of the introduction of the pressure correction. However, for the density a predictor value

is used. If there is heat transfer, this predictor value q* cannot be considered as the updated value qn + 1,

since the temperature influence has to be inserted. Therefore, density would also have to be corrected, lead-

ing again to a coupled solution with the continuity equation. This becomes also clear from Eq. (58), written

as
ðqeÞp
op
ot

þ u
op
ox

� �
þ ðqeþ pÞ ou

ox
¼ o

ox
j
oT
ox

� �
¼ o

ox
j T p

op
ox

þ T q
oq
ox

� �� �
¼ o

ox
j

1

q
op
ox

� p
q2

oq
ox

� �� �
;

ð98Þ

where both terms in the RHS have to be treated implicitly to avoid a diffusive limit. When (97) is applied,

however, only the pressure term is treated implicitly. The explicit treatment of the density term explains why

a diffusive limit occurs.
8. Coupled pressure and temperature correction: in between the fully coupled and the fully segregated approach

The presented algorithm, referred to as coupled pressure and temperature correction algorithm, is situated

in between the fully coupled and the fully segregated approach. The essential idea, is that the convective

phenomenon (predictor step, momentum equation) is separated from the acoustic/thermodynamic phe-

nomenon (corrector step, energy + continuity equation). We now present how this algorithm relates to

other methods available in the literature.

8.1. Fully coupled approach

Writing the acoustic and diffusive terms implicitly, one can still decide to solve the system of equations in

a coupled way. An example of such a semi-implicit method can be found in [20]. The underlying idea is the

same as in our method, but the solution technique is different.

8.2. Fully segregated approach

This approach is adopted in a pressure-correction method, where the equations are fulfilled iteratively.

In the literature, we distinguish two classes, based on how the pressure-correction equation is constructed.

In the first class, the pressure-correction equation is derived from the continuity equation, in the second

class, the energy equation is used for this purpose.

8.2.1. Class 1: pressure-correction equation based on the continuity equation

Several examples of compressible pressure-correction methods exist, where the pressure-correction equa-

tion is derived from the continuity equation [5–10,16]. According to the foregoing analysis, this is not the
most optimal way to determine the pressure corrections. The idea of using the continuity equation comes

from the classical pressure-correction method, originally developed for constant density flows [4]. For that

case, the continuity equation reduces to the kinematic constraint r �~v ¼ 0, and the pressure-correction

equation is derived from it. This is the right approach according to our analysis of Section 5.1 (special
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case 1). Also for the case of a barotropic fluid, deriving the pressure-correction equation from the continu-

ity equation is the preferred approach (Section 5.1, special case 2). An example can be found in [25] or [1].

8.2.2. Class 2: pressure-correction equation based on the energy equation

For a perfect gas flow without heat transfer, the pressure-corrections are determined most efficiently
through the energy equation. In [23,24,26,27], a low Mach number perturbation analysis is used to show

that forM ! 0 the energy equation reduces to the kinematic constraintr �~v ¼ 0. The presented algorithms

are based on that analysis, and are therefore only applicable in low Mach number flows. In [13], a non-con-

servative form of the equations is used. The algorithms in [11,12,14] are Mach-uniform, but no heat transfer

is considered there.
9. Results

Though the algorithm was developed for a general fluid, so far only test cases with a perfect gas law were

considered. For the adiabatic flow simulations, the fully segregated algorithm with a pressure-correction

equation based on the energy equation was used.

9.1. Adiabatic flow

First the Euler equations are considered, i.e., heat conduction and viscosity are neglected. As a test case,
we take a converging–diverging one-dimensional nozzle. The section of the nozzle varies as
SðxÞ ¼

S0; 0 6 x 6 2L
28
;

S0 0:9þ 0:1 2
x�11L

28
9L
28

� �2
� x�11L

28
9L
28

� �4� � �
; 2L

28
6 x 6 20L

28
;

S0;
20L
28

6 x 6 L;

8>>><
>>>:
where L is the length of the nozzle, L = 1 m. At the inlet boundary, the density and velocity are imposed.

The pressure is fixed at the outlet boundary. The number of grid points is N = 100. The cell dimension is

taken as reference length, Lr = L/(N � 1), so that Dx = 1. The other reference values are taken at atmo-

spheric conditions, Tr = 293 K, pr = 101,300 Pa. Both low and high speed flows are considered.

9.1.1. Low speed

We consider a subsonic nozzle flow with a throat Mach number Mt of 10
�3. The time step s = Dt/Dx is

calculated from a chosen convective CFL-number CFLu, i.e.
s ¼ CFLu

maxiðuÞ
: ð99Þ
We remark that this corresponds with an acoustic CFL number, that is about 1000 times higher. Indeed,
CFLuþc ¼ s maxiðuþ cÞ ¼ CFLu

maxiðuÞ
maxiðuþ cÞ ¼ 1þ 1

M t

� �
CFLu � 1000CFLu: ð100Þ
First, we do the calculation with the fully segregated algorithm with an energy-based pressure-correction

equation (Section 7.5). The convective CFLu number was taken unity: there is no acoustic CFL limit.
Fig. 1 shows the results for the Mach number and the pressure. Because the pressure variations are very

small, we show a relative value, i.e., Dp = p � pout.
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Fig. 2 shows the convergence plot. The vertical axis has a logarithmic scale and Res Cont, Res Mom and

Res Energ represent the residual vectors of, respectively, the continuity, momentum and energy equation, of

which the L2-norm is taken.

Next, we did the same calculation with the algorithm where pressure corrections are derived from the

continuity equation (Section 7.5 and Appendix B). The computation could also be done at a CFLu = 1,
but it could only be made stable by applying an underrelaxation for the temperature and pressure, i.e.
Fig. 1.

pressu
T nþ1 ¼ xT � þ ð1� xÞT k; ð101Þ

p ¼ pk þ xp0: ð102Þ

An underrelaxation factor x of 0.7 was used. As explained, the need for underrelaxation arises from the

non-optimal way to obtain the pressure corrections. Fig. 2 shows that for the latter algorithm, the conver-

gence to the steady state is about three times slower.

The effect of the CFL-number on the convergence rate is illustrated in Fig. 3. The computation at

CFLu = 10 converges more rapidly in the first time steps. This is due to the faster detection of the boundary

conditions. However, at CFLu = 10 it takes more time steps to reach the steady state. This can be explained

by approximations that are made during the segregation procedure, for example in (67). The latter was used
to do the update for the momentum.

Finally, we compare computations for different nozzle flows, with throat Mach numbers of 10�2, 10�3

and 10�5. Fig. 4 shows a Mach-uniform convergence rate for the energy-based pressure-correction algo-

rithm. The different levels of the final residuals is due to the so-called cancellation problem [28].

We conclude that the Mach-uniform algorithm performs very well for this low speed flow, with regard to

accuracy as well as efficiency.

9.1.2. High speed

To illustrate that the algorithm is Mach-uniform, we also do a computation of a high speed flow. We

consider a transonic nozzle with a shock at position 15L/28.

Fig. 5 shows the convergence plot for a computation at CFLu = 1 and 10. We remark that for this case

CFLu � CFLu+c since the flow speed u takes values close to the speed of sound c. Compared to the low

Mach calculations, the convergence rate slows down. The first reason, is the stiffness in the system of equa-

tions at the sonic point M = 1. Like for the low Mach stiffness at M = 0, an eigenvalue becomes zero if

u = c. The stiffness problem at low Mach numbers was taken out through the construction of the algorithm.
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Subsonic nozzle flow, Mt = 0.001. Mach number and relative pressure distribution. Symbols: Mach-uniform algorithm with

re-correction equation based on the energy equation, CFLu = 1. Solid line: analytic solution.
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Fig. 2. Subsonic nozzle flow, Mt = 0.001. Res Cont, Res Im and Res Energ as a function of the number of time steps. CFLu = 1. Solid
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The second reason, is the higher sensitivity to the reflective boundary conditions (see Section 7.4). The

Mach number and pressure distributions are shown in Fig. 6. The shock is somewhat smeared out because

the upwind scheme is only first-order accurate.
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We conclude that also for the high Mach numbers, we reach a good convergence rate and accuracy.

Clearly, the algorithm shows Mach-uniform efficiency and accuracy.

9.2. Non-adiabatic flow

9.2.1. One-dimensional nozzle flow

We consider again the test case of a one-dimensional nozzle flow, but now internal heat conduction is

taken into account (friction is still neglected).
Just like for the adiabatic computations, no acoustic time step limit occurs. All the simulations are done

at a convective CFLu number of 1 at the throat.

If also a diffusive time step limit is to be avoided, the coupled solution of the energy and the continuity

equation for both pressure and temperature corrections is needed. With the time step derived from the con-

vective CFL number, (99), and c ¼
ffiffiffiffiffiffiffiffiffi
cRT

p
=ûr ¼

ffiffiffi
c

p
, the Von Neumann number is calculated as
Ne ¼ ĵ
q̂ĉp

Dt̂

Dx̂2
¼ c� 1

c
j
q

Dt
Dx2

¼ c� 1

c
j
q

CFLu

umaxDx
¼ c� 1

c
j
q

CFLuffiffiffi
c

p
M tDx

; ð103Þ
with q � 1, Dx = 1, CFLu = 1 and for the transonic case Mt � 1. A realistic value for the non-dimensional
heat conduction coefficient j can be derived from (12). For example, with
ĵ ¼ 0:0242 W=ðmKÞðairÞ; ð104Þ

p̂r ¼ 101; 300 Pa; ð105Þ

T̂ r ¼ 293 K; ð106Þ
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ûr ¼
ffiffiffiffiffiffiffiffi
RT̂ r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
287:293

p
m=s; ð107Þ

L̂r ¼ Dx̂ ¼ L̂=N ¼ 1 m=100; ð108Þ

we obtain j = 2.41 · 10�5.
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Table 1 shows the stability results for both the subsonic nozzle (throat Mach number Mt = 0.01 and 0.1)

and transonic nozzle flow. The columns indicated with exp refer to an explicit calculation of the heat flux,

which is added as extra term in the RHS of the pressure-correction equation based on the energy equation.

Coup refers to the coupled pressure and temperature correction method. Different values for j were tested.

We remark that j was risen above realistic values, but we mean to examine the presence of a diffusive limit.
Table 1 also gives the number of time steps until convergence (residual 10�12 for the subsonic flow and 10�8

for the transonic flow), together with the time needed to do the calculation (just meant to compare the two

algorithms). The results show clearly that the method with explicit heat flux becomes unstable as soon as

the Von Neumann number becomes higher than order unity. The coupled method, however, stays stable no

matter how high j is taken. Because the coupled method has to solve a (2N · 2N)-system, versus only

(N · N)-systems in the explicit method, the calculation time to perform a certain number of time steps is

longer with the coupled method. Remark that for the tests at Mt = 0.1 the convergence is much slower than

for the calculations at lower Mach numbers. This is purely an effect of the used boundary conditions, which
are reflective (see Section 7.4).

9.2.2. Thermally driven cavity

As a second test case for non-adiabatic flow, the two-dimensional thermally driven cavity problem is

considered [26]. It concerns a squared cavity of dimension L · L filled with a perfect gas. The upper and

lower walls are isolated (adiabatic). The left-hand side is heated (temperature Th) and the right-hand side

is cooled (temperature Tc), which causes a very slow circular movement of the gas due to natural convec-

tion. Besides heat conduction, also viscosity and gravity are taken into account, so the full Navier–Stokes
equations are used.

This is a very challenging problem for our algorithm. Indeed, due to the very low Mach numbers

(M = O(10�7) for the case considered), no acoustic CFL-limit is allowed, since it would destroy the effi-

ciency. Furthermore, in wall vicinity, the convective speeds are very small and the conduction becomes

the dominating phenomenon. Therefore, also a diffusive Von Neumann-limit has to be avoided, so a cou-

pled solution of the continuity and the energy equation is needed. Slightly different from the procedure in
Table 1

Nozzle flow

Nozzle j Ne Stable? Time steps Calc. time (in s)

Exp. Coup. Exp. Coup. Exp. Coup.

Subsonic 10�5 2.42 · 10�4 Yes Yes 220 208 19.6 23.5

Mt = 0.01 0.01 0.242 Yes Yes 259 224 22.3 24.5

Ne � j 0:242
0:01 0.1 2.42 No Yes – 337 – 36.8

1 24.2 No Yes – 646 – 70.4

10 242 No Yes – 222 – 24.5

Subsonic 10�5 2.42 · 10�5 Yes Yes 1186 1180 101.2 128.8

Mt = 0.1 0.1 0.242 Yes Yes 1182 1176 101.1 128.4

Ne � j 0:242
0:1 1 2.4 No Yes – 1211 – 132.2

10 24.2 No Yes – 2019 – 228.7

Transonic 10�5 2.42 · 10�6 Yes Yes 3280 3309 290.0 372.9

Ne � j 0:242
1

1 0.242 Yes Yes 3169 3200 279.9 359.0

10 2.42 No Yes – 4850 – 549.7

100 24.2 No Yes – 3696 – 413.3

Stability, number of time steps until convergence and calculation time, for different values of j. Exp., pressure-correction equation

based on the energy equation, heat flux calculated with T*. Coup., coupled pressure and temperature correction method.
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Section 7.3, the final update of (qu) is done by using the full momentum equations with updated pressure

values, instead of using the approximation (67).

Also a diffusive limit due to the viscous terms is unwanted. Therefore, the viscous terms in the momen-

tum equations are treated implicitly in the predictor step. They are discretized centrally and viscous velocity

terms are written as (qu)*/q* and (qv)*/q*. Remark that these linear terms are easier to treat than the non-
linear convective terms. For the latter terms, linearizations and approximations due to the segregation pro-

cedure have to be adopted.

All technical details concerning this test case can be found in [29] or [30]. The dynamic viscosity l = l(T)
is given by Sutherland�s law,
lðT Þ ¼ ls T
T s

� �3=2 T s þ S
T þ S

; ð109Þ
with Ts = 273 K, S = 110.5 K, ls = 1.68 · 10�5 Pa s. The Prandl number Pr is assumed to remain constant,

equal to 0.71. The heat conduction coefficient is calculated as j(T) = l(T)cp/Pr. The heat transfer through

the wall is represented by local and average Nusselt numbers Nu and Nu,
NuðyÞ ¼ L
jðT rÞðT h � T cÞ

j
oT
ox

����
wall

; ð110Þ

Nu ¼ 1

L

Z y¼L

y¼0

NuðyÞ dy: ð111Þ
During the computation, the mean pressure level is adjusted in order to keep the mass content constant. A

reduced pressure was used, i.e., the pressure subtracted with an offset value and the hydrostatic pressure

field. The pressure dissipation terms to realise pressure–velocity coupling are introduced as in [30]. The
gravity terms are calculated with starred predictor values for the density.

In [29], an extensive description of some benchmark solutions is given. We consider the case of a

Rayleigh number Ra = 103 and a non-dimensional temperature difference � = (Th � Tc)/(2Tr) = 0.6. Chosen

reference values are p̂r ¼ 101; 325 Pa; T̂ r ¼ 600 K and L̂r ¼ L ¼ 1 m. Results are computed on a 129 · 129

stretched grid, of which the maximum aspect ratio is 80. A vertex-centered arrangement is used. A direct

solver with LU-decomposition was used to solve the systems, though more efficient solvers will be consid-

ered in the future. The non-dimensional time step was taken 104, which was about the highest value to keep

the computation stable. It corresponds with a dimensional value
Dt̂ ¼ Dt t̂r ¼ Dt
L̂rffiffiffiffiffiffiffiffi
RT̂ r

p � 24:1 s: ð112Þ
Streamline patterns and temperature contours obtained after 1000 time steps are shown in Fig. 7. A
convergence plot is given in Fig. 8. Values obtained for the mean Nusselt numbers and mean pressure

are presented in Table 2.

Rounded at two significant digits, correct values are obtained. More correct digits would be obtained by

a higher order discretization (only first order was used so far). This can be done without difficulties. How-

ever, the focus of this paper lies in the removal of the acoustic and diffusive time step limits. Therefore, we

calculate the acoustic CFL number and the Von Neumann number. We calculate them at the left wall,

where the highest temperature occurs, T̂ � T̂ h ¼ ð1þ �ÞT̂ r ¼ 960 K. The left cells have an aspect ratio

Dy/Dx = 80 and Dx̂ � 0:0004 m. With u � c and Dx � Dy, we get for the maximum acoustic CFL-number
CFLuþc �
ĉDt̂
Dx̂

�

ffiffiffiffiffiffiffiffiffiffiffi
cRT̂ h

q
Dt̂

Dx̂
� 4x107; ð113Þ



Fig. 7. Thermally driven cavity, Ra = 1E3, � = 0.6. Streamline patterns and temperature contours obtained with the coupled pressure

and temperature correction method.
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Table 2

Thermally driven cavity, Ra = 1E3, � = 0.6

Ra = 1E3 � = 0.6 Coupled pressure and temperature correction algorithm Benchmark solution [29]

Nuleft 1.1150 1.1077

Numid 1.1116 1.1077

Nuright 1.1149 1.1077

�p=pr 0.93973 0.93805

Values for the mean Nusselt numbers at the left wall, mid plane and right wall, and mean pressure.
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which can be considered as infinity. We conclude that there is no stability limit coming from the acoustic

terms. With
p̂ � �p ¼ 0:94� 101; 235 Pa ¼ 95245:5 Pa; ð114Þ

q̂ � p̂=ðRT̂ hÞ � 0:346 kg=m3; ð115Þ

l̂ðT̂ hÞ � 3:969� 10�5 Pa s; ð116Þ

ĵðT̂ hÞ � 0:0561 W=mK; ð117Þ

â ¼ ĵ
q̂ĉp

� 1:617� 10�4 m2=s; ð118Þ
and Dx � Dy, we get for the maximum value of the Von Neumann number
Ne � aDt
Dx2

� 2� 104: ð119Þ
Clearly, there is no diffusive limit coming from the heat conduction terms. For the viscous terms, the

same conclusion holds, as
Nevis ¼
l
q

Dt
Dx2

� 2� 104: ð120Þ
10. Conclusion

We have presented a new type of algorithm: the coupled pressure- and temperature-correction algo-

rithm. It finds its place in between the fully segregated pressure-correction algorithms and the fully coupled

solution techniques. The essential idea is the separation of the convective phenomenon on the one side, and

the acoustic/thermodynamic phenomenon on the other side. Based on a theoretical analysis, the algorithm

was constructed so that Mach-uniform accuracy and efficiency are obtained, which was confirmed by the

test results. Especially the removal of the acoustic and diffusive time step limits is an important feature.
When the special case of a perfect gas without heat transfer is considered, the algorithm reduces to a fully

segregated approach with a pressure-correction equation based on the energy equation. Finally, the easy

extension toward general fluid applications, and the maintenance of time accuracy, are attractive aspects

of this coupled pressure- and temperature-correction algorithm.
Appendix A. The speed of sound expressed with a general equation of state

The isentropic speed of sound is defined as
c2 ¼ dp
dq

����
s¼cst

: ðA:1Þ
With qh = qe + p, we have
q dhþ h dq ¼ dðqeÞ þ dp: ðA:2Þ
For constant entropy, Tds = dh � dp/q = 0, we get
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h dq ¼ dðqeÞ ¼ ðqeÞp¼cst

q dqþ ðqeÞq¼cst

p dp: ðA:3Þ
We obtain
c2 ¼
h� ðqeÞp¼cst

q

ðqeÞq¼cst

p

; ðA:4Þ
with
ðqeÞp¼cst

q ¼ oðqeÞ
oq

����
p¼cst

¼ oðqeÞ
oT

����
p¼cst

 !
oT
oq

����
p¼cst

 !
¼ ðqeÞT

qT
; ðA:5Þ

ðqeÞq¼cst

p ¼ oðqeÞ
op

����
q¼cst

: ðA:6Þ
From
dðqeÞ ¼ ðqeÞp dp þ ðqeÞT dT ; ðA:7Þ

dq ¼ qp dp þ qT dT ¼ 0; ðA:8Þ
for constant q, we get
dðqeÞ ¼ ðqeÞp dp þ ðqeÞT �
qp

qT
dp

� �
; ðA:9Þ

oðqeÞ
op

����
q¼cst

¼ ðqeÞp �
qp

qT
ðqeÞT : ðA:10Þ
With (A.5) and (A.10), the speed of sound (A.4) becomes
c2 ¼ 1

q
ðqeþ pÞqT � qðqeÞT
ðqeÞpqT � qpðqeÞT

; ðA:11Þ
being valid for a general fluid. For a constant density fluid, c becomes infinity. For a perfect gas, qe = p/

(c � 1), we get the well-known expression,
c2 ¼ 1

q
ðqeþ pÞ
ðqeÞp

¼ cp
q
: ðA:12Þ
Appendix B. Algorithm with pressure-correction equation based on the continuity equation

For the case of a perfect gas without heat transfer, an algorithm can be constructed where the pressure

correction equation is derived from the continuity equation (see Section 7.5).
B.1. Predictor step

A predictor step is taken from the momentum and the energy equation,
ðquÞ�i � ðquÞni þ
s
Si

ðquÞ�i ukiþ1
2
Siþ1

2
� ðquÞ�i�1u

k
i�1

2
Si�1

2

h i
¼ �sðpkiþ1

2
� pki�1

2
Þ; ðB:1Þ
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ðqEÞ�i � ðqEÞni þ
s
Si

ðqEÞ�i ukiþ1
2
Siþ1

2
� ðqEÞ�i�1u

k
i�1

2
Si�1

2

h i
¼ � s

Si
pkiþ1

2
ukiþ1

2
Siþ1

2
� pki�1

2
uki�1

2
Si�1

2

� �
: ðB:2Þ
An intermediate state u*, T*, pk is determined by using an old density value, i.e.,
u�i ¼ ðquÞ�i =qk
i ; ðB:3Þ

T �
i ¼

ðqEÞ�i
qk
i

� 1

2
ðu�i Þ

2
: ðB:4Þ
B.2. Corrector step

The relations between momentum corrections and pressure corrections are the same as in Section 7.2.1,

namely
ðquÞ0i ¼
s
Si

ðquÞ�i Diþ1
2
ðp0iþ1 � p0iÞSiþ1

2
� ðquÞ�i�1Di�1

2
ðp0i � p0i�1ÞSi�1

2

n o
� s p0iþ1

2
� p0i�1

2

n o
ðB:5Þ
and
ðquÞ0iþ1
2
¼ � sþ q�

i Diþ1
2

h i
ðp0iþ1 � p0iÞ: ðB:6Þ
The pressure corrections are obtained from a continuity-based pressure-correction equation under a frozen

temperature (see Eq. (96)),
Ai;i�1p0i�1 þ Ai;ip0i þ Ai;iþ1p0iþ1 ¼ SCi: ðB:7Þ
B.3. Procedure

The procedure is as follows:

� Predictor values ðquÞ�i and ðqEÞ�i are determined from (B.1) and (B.2). Using old density values, an inter-

mediate state u*, T*, pk is determined. The predictor value T* is used as an update for the temperature,

Tn + 1 = T*;
� The system of pressure-correction equations (B.7) is solved. The pressure is updated;

� Momentum is updated from (B.5);

� The equation of state is used to update the density, qn + 1 = pn + 1/Tn + 1;

� The velocity is calculated from the updated values of momentum and density;

� A next iteration step is taken.
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